A PBPK model for evaluating the impact of aldehyde dehydrogenase polymorphisms on comparative rat and human nasal tissue acetaldehyde dosimetry.

نویسندگان

  • Justin G Teeguarden
  • Matthew S Bogdanffy
  • Tammie R Covington
  • Cecilia Tan
  • Annie M Jarabek
چکیده

Acetaldehyde is an important intermediate in the chemical synthesis and normal oxidative metabolism of several industrially important compounds, including ethanol, ethyl acetate, and vinyl acetate. Chronic inhalation of acetaldehyde leads to degeneration of the olfactory and respiratory epithelium in rats at concentrations > 50 ppm (90 day exposure) and respiratory and olfactory nasal tumors at concentrations > or = 750 ppm, the lowest concentration tested in the 2-yr chronic bioassay. Differences in the anatomy and biochemistry of the rodent and human nose, including polymorphisms in human high-affinity acetaldehyde dehydrogenase (ALDH2), are important considerations for interspecies extrapolations in the risk assessment of acetaldehyde. A physiologically based pharmacokinetic model of rat and human nasal tissues was constructed for acetaldehyde to support a dosimetry-based risk assessment for acetaldehyde (Dorman et al., 2008). The rodent model was developed using published metabolic constants and calibrated using upper-respiratory-tract acetaldehyde extraction data. The human nasal model incorporates previously published tissue volumes, blood flows, and acetaldehyde metabolic constants. ALDH2 polymorphisms were represented in the human model as reduced rates of acetaldehyde metabolism. Steady-state dorsal olfactory epithelial tissue acetaldehyde concentrations in the rat were predicted to be 409, 6287, and 12,634 microM at noncytotoxic (50 ppm), and cytotoxic/tumorigenic exposure concentrations (750 and 1500 ppm), respectively. The human equivalent concentration (HEC) of the rat no-observed-adverse-effect level (NOAEL) of 50 ppm, based on steady-state acetaldehyde concentrations from continual exposures, was 67 ppm. Respiratory and olfactory epithelial tissue acetaldehyde and H(+) (pH) concentrations were largely linear functions of exposure in both species. The impact of presumed ALDH2 polymorphisms on human olfactory tissue concentrations was negligible; the high-affinity, low-capacity ALDH2 does not contribute significantly to acetaldehyde metabolism in the nasal tissues. The human equivalent acetaldehyde concentration for homozygous low activity was 66 ppm, 1.5% lower than for the homozygous full activity phenotype. The rat and human acetaldehyde PBPK models developed here can also be used as a bridge between acetaldehyde dose-response and mode-of-action data as well as between similar databases for other acetaldehyde-producing nasal toxicants.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Validation of human physiologically based pharmacokinetic model for vinyl acetate against human nasal dosimetry data.

Vinyl acetate has been shown to induce nasal lesions in rodents in inhalation bioassays. A physiologically based pharmacokinetic (PBPK) model for vinyl acetate has been used in human risk assessment, but previous in vivo validation was conducted only in rats. Controlled human exposures to vinyl acetate were conducted to provide validation data for the application of the model in humans. Five vo...

متن کامل

Ethyl acrylate risk assessment with a hybrid computational fluid dynamics and physiologically based nasal dosimetry model.

Cytotoxicity in the nasal epithelium is frequently observed in rodents exposed to volatile organic acids and esters by inhalation. An interspecies, hybrid computational fluid dynamics and physiologically based pharmacokinetic (CFD-PBPK) dosimetry model for inhaled ethyl acrylate (EA) is available for estimating internal dose measures for EA, its metabolite acrylic acid (AA), and EA-mediated red...

متن کامل

Interaction of the Effects of Alcohol Drinking and Polymorphisms in Alcohol-Metabolizing Enzymes on the Risk of Female Breast Cancer in Japan

BACKGROUND Epidemiological studies consistently indicate that alcoholic beverages are an independent risk factor for female breast cancer. Although the mechanism underlying this effect remains unknown, the predominant hypothesis implicates mutagenesis via the ethanol metabolite acetaldehyde, whose impact on the carcinogenesis of several types of cancer has been shown in both experimental models...

متن کامل

Effects of acetaldehyde inhalation in mitochondrial aldehyde dehydrogenase deficient mice (Aldh2-/-).

Human body might be exposed to acetaldehyde from smoking or occupational environment, which is known to be associated with cancer through the formation of DNA adducts, in particular, N2-ethylidene-2'- deoxyguanosine (N2-ethylidene-dG). Aldehyde dehydrogenase 2 (ALDH2) is the major enzyme that contribute to the detoxification of acetaldehyde in human body. In this study, wild type (Aldh2+/+) and...

متن کامل

A physiologically based model for ethanol and acetaldehyde metabolism in human beings.

Pharmacokinetic models for ethanol metabolism have contributed to the understanding of ethanol clearance in human beings. However, these models fail to account for ethanol's toxic metabolite, acetaldehyde. Acetaldehyde accumulation leads to signs and symptoms, such as cardiac arrhythmias, nausea, anxiety, and facial flushing. Nevertheless, it is difficult to determine the levels of acetaldehyde...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Inhalation toxicology

دوره 20 4  شماره 

صفحات  -

تاریخ انتشار 2008